Papers
Topics
Authors
Recent
2000 character limit reached

Higher fidelity perceptual image and video compression with a latent conditioned residual denoising diffusion model (2505.13152v1)

Published 19 May 2025 in eess.IV and cs.CV

Abstract: Denoising diffusion models achieved impressive results on several image generation tasks often outperforming GAN based models. Recently, the generative capabilities of diffusion models have been employed for perceptual image compression, such as in CDC. A major drawback of these diffusion-based methods is that, while producing impressive perceptual quality images they are dropping in fidelity/increasing the distortion to the original uncompressed images when compared with other traditional or learned image compression schemes aiming for fidelity. In this paper, we propose a hybrid compression scheme optimized for perceptual quality, extending the approach of the CDC model with a decoder network in order to reduce the impact on distortion metrics such as PSNR. After using the decoder network to generate an initial image, optimized for distortion, the latent conditioned diffusion model refines the reconstruction for perceptual quality by predicting the residual. On standard benchmarks, we achieve up to +2dB PSNR fidelity improvements while maintaining comparable LPIPS and FID perceptual scores when compared with CDC. Additionally, the approach is easily extensible to video compression, where we achieve similar results.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.