Papers
Topics
Authors
Recent
2000 character limit reached

Convergence to equilibrium for density dependent Markov jump processes (2505.12926v1)

Published 19 May 2025 in math.PR

Abstract: We investigate the convergence to (quasi--)equilibrium of a density dependent Markov chain in~${\mathbb Z}d$, whose drift satisfies a system of ordinary differential equations having an attractive fixed point. For a sequence of such processes~${\mathbb X}N$, indexed by a size parameter~$N$, the time taken until the distribution of~${\mathbb X}N$, started in some given state, approaches its equilibrium distribution~$\piN$ typically increases with~$N$. To first order, it corresponds to the time~$t_N$ at which the solution to the drift equations reaches a distance of~$\sqrt N$ from their fixed point. However, the length of the time interval over which the total variation distance between ${\mathcal L} ({\mathbb X}N(t))$ and its equilibrium distribution~$\piN$ changes from being close to~$1$ to being close to zero is asymptotically of smaller order than~$t_N$. In this sense, the chains exhibit `cut--off', and we are able to prove that the cut-off window is of (optimal) constant size.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.