Automated Bias Assessment in AI-Generated Educational Content Using CEAT Framework (2505.12718v1)
Abstract: Recent advances in Generative Artificial Intelligence (GenAI) have transformed educational content creation, particularly in developing tutor training materials. However, biases embedded in AI-generated content--such as gender, racial, or national stereotypes--raise significant ethical and educational concerns. Despite the growing use of GenAI, systematic methods for detecting and evaluating such biases in educational materials remain limited. This study proposes an automated bias assessment approach that integrates the Contextualized Embedding Association Test with a prompt-engineered word extraction method within a Retrieval-Augmented Generation framework. We applied this method to AI-generated texts used in tutor training lessons. Results show a high alignment between the automated and manually curated word sets, with a Pearson correlation coefficient of r = 0.993, indicating reliable and consistent bias assessment. Our method reduces human subjectivity and enhances fairness, scalability, and reproducibility in auditing GenAI-produced educational content.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.