Papers
Topics
Authors
Recent
2000 character limit reached

SafeMove-RL: A Certifiable Reinforcement Learning Framework for Dynamic Motion Constraints in Trajectory Planning (2505.12648v1)

Published 19 May 2025 in cs.RO

Abstract: This study presents a dynamic safety margin-based reinforcement learning framework for local motion planning in dynamic and uncertain environments. The proposed planner integrates real-time trajectory optimization with adaptive gap analysis, enabling effective feasibility assessment under partial observability constraints. To address safety-critical computations in unknown scenarios, an enhanced online learning mechanism is introduced, which dynamically corrects spatial trajectories by forming dynamic safety margins while maintaining control invariance. Extensive evaluations, including ablation studies and comparisons with state-of-the-art algorithms, demonstrate superior success rates and computational efficiency. The framework's effectiveness is further validated on both simulated and physical robotic platforms.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.