Papers
Topics
Authors
Recent
2000 character limit reached

Duluth at SemEval-2025 Task 7: TF-IDF with Optimized Vector Dimensions for Multilingual Fact-Checked Claim Retrieval (2505.12616v1)

Published 19 May 2025 in cs.CL

Abstract: This paper presents the Duluth approach to the SemEval-2025 Task 7 on Multilingual and Crosslingual Fact-Checked Claim Retrieval. We implemented a TF-IDF-based retrieval system with experimentation on vector dimensions and tokenization strategies. Our best-performing configuration used word-level tokenization with a vocabulary size of 15,000 features, achieving an average success@10 score of 0.78 on the development set and 0.69 on the test set across ten languages. Our system showed stronger performance on higher-resource languages but still lagged significantly behind the top-ranked system, which achieved 0.96 average success@10. Our findings suggest that though advanced neural architectures are increasingly dominant in multilingual retrieval tasks, properly optimized traditional methods like TF-IDF remain competitive baselines, especially in limited compute resource scenarios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.