Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hamiltonian Descent Algorithms for Optimization: Accelerated Rates via Randomized Integration Time (2505.12553v1)

Published 18 May 2025 in math.OC, cs.LG, and stat.ML

Abstract: We study the Hamiltonian flow for optimization (HF-opt), which simulates the Hamiltonian dynamics for some integration time and resets the velocity to $0$ to decrease the objective function; this is the optimization analogue of the Hamiltonian Monte Carlo algorithm for sampling. For short integration time, HF-opt has the same convergence rates as gradient descent for minimizing strongly and weakly convex functions. We show that by randomizing the integration time in HF-opt, the resulting randomized Hamiltonian flow (RHF) achieves accelerated convergence rates in continuous time, similar to the rates for the accelerated gradient flow. We study a discrete-time implementation of RHF as the randomized Hamiltonian gradient descent (RHGD) algorithm. We prove that RHGD achieves the same accelerated convergence rates as Nesterov's accelerated gradient descent (AGD) for minimizing smooth strongly and weakly convex functions. We provide numerical experiments to demonstrate that RHGD is competitive with classical accelerated methods such as AGD across all settings and outperforms them in certain regimes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 6 likes.