Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 19 tok/s
GPT-5 High 18 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 26 tok/s Pro
2000 character limit reached

LAMeTA: Intent-Aware Agentic Network Optimization via a Large AI Model-Empowered Two-Stage Approach (2505.12247v1)

Published 18 May 2025 in cs.NI and cs.AI

Abstract: Nowadays, Generative AI (GenAI) reshapes numerous domains by enabling machines to create content across modalities. As GenAI evolves into autonomous agents capable of reasoning, collaboration, and interaction, they are increasingly deployed on network infrastructures to serve humans automatically. This emerging paradigm, known as the agentic network, presents new optimization challenges due to the demand to incorporate subjective intents of human users expressed in natural language. Traditional generic Deep Reinforcement Learning (DRL) struggles to capture intent semantics and adjust policies dynamically, thus leading to suboptimality. In this paper, we present LAMeTA, a Large AI Model (LAM)-empowered Two-stage Approach for intent-aware agentic network optimization. First, we propose Intent-oriented Knowledge Distillation (IoKD), which efficiently distills intent-understanding capabilities from resource-intensive LAMs to lightweight edge LAMs (E-LAMs) to serve end users. Second, we develop Symbiotic Reinforcement Learning (SRL), integrating E-LAMs with a policy-based DRL framework. In SRL, E-LAMs translate natural language user intents into structured preference vectors that guide both state representation and reward design. The DRL, in turn, optimizes the generative service function chain composition and E-LAM selection based on real-time network conditions, thus optimizing the subjective Quality-of-Experience (QoE). Extensive experiments conducted in an agentic network with 81 agents demonstrate that IoKD reduces mean squared error in intent prediction by up to 22.5%, while SRL outperforms conventional generic DRL by up to 23.5% in maximizing intent-aware QoE.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube