LLM-Based Emulation of the Radio Resource Control Layer: Towards AI-Native RAN Protocols (2505.16821v2)
Abstract: Integrating large AI models (LAMs) into 6G mobile networks promises to redefine protocol design and control-plane intelligence by enabling autonomous, cognitive network operations. While industry concepts, such as ETSI's Experiential Networked Intelligence (ENI), envision LAM-driven agents for adaptive network slicing and intent-based management, practical implementations still face challenges in protocol literacy and real-world deployment. This paper presents an end-to-end demonstration of a LAM that generates standards-compliant, ASN.1-encoded Radio Resource Control (RRC) messages as part of control-plane procedures inside a gNB. We treat RRC messaging as a domain-specific language and fine-tune a decoder-only transformer model (LLaMA class) using parameter-efficient Low-Rank Adaptation (LoRA) on RRC messages linearized to retain their ASN.1 syntactic structure before standard byte-pair encoding tokenization. This enables combinatorial generalization over RRC protocol states while minimizing training overhead. On 30k field-test request-response pairs, our 8 B model achieves a median cosine similarity of 0.97 with ground-truth messages on an edge GPU -- a 61 % relative gain over a zero-shot LLaMA-3 8B baseline -- indicating substantially improved structural and semantic RRC fidelity. Overall, our results show that LAMs, when augmented with Radio Access Network (RAN)-specific reasoning, can directly orchestrate control-plane procedures, representing a stepping stone toward the AI-native air-interface paradigm. Beyond RRC emulation, this work lays the groundwork for future AI-native wireless standards.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.