ChatHTN: Interleaving Approximate (LLM) and Symbolic HTN Planning (2505.11814v1)
Abstract: We introduce ChatHTN, a Hierarchical Task Network (HTN) planner that combines symbolic HTN planning techniques with queries to ChatGPT to approximate solutions in the form of task decompositions. The resulting hierarchies interleave task decompositions generated by symbolic HTN planning with those generated by ChatGPT. Despite the approximate nature of the results generates by ChatGPT, ChatHTN is provably sound; any plan it generates correctly achieves the input tasks. We demonstrate this property with an open-source implementation of our system.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.