ASR-FAIRBENCH: Measuring and Benchmarking Equity Across Speech Recognition Systems (2505.11572v1)
Abstract: Automatic Speech Recognition (ASR) systems have become ubiquitous in everyday applications, yet significant disparities in performance across diverse demographic groups persist. In this work, we introduce the ASR-FAIRBENCH leaderboard which is designed to assess both the accuracy and equity of ASR models in real-time. Leveraging the Meta's Fair-Speech dataset, which captures diverse demographic characteristics, we employ a mixed-effects Poisson regression model to derive an overall fairness score. This score is integrated with traditional metrics like Word Error Rate (WER) to compute the Fairness Adjusted ASR Score (FAAS), providing a comprehensive evaluation framework. Our approach reveals significant performance disparities in SOTA ASR models across demographic groups and offers a benchmark to drive the development of more inclusive ASR technologies.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.