Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

HessFormer: Hessians at Foundation Scale (2505.11564v1)

Published 16 May 2025 in cs.LG and stat.ML

Abstract: Whilst there have been major advancements in the field of first order optimisation of deep learning models, where state of the art open source mixture of expert models go into the hundreds of billions of parameters, methods that rely on Hessian vector products, are still limited to run on a single GPU and thus cannot even work for models in the billion parameter range. We release a software package \textbf{HessFormer}, which integrates nicely with the well known Transformers package and allows for distributed hessian vector computation across a single node with multiple GPUs. Underpinning our implementation is a distributed stochastic lanczos quadrature algorithm, which we release for public consumption. Using this package we investigate the Hessian spectral density of the recent Deepseek $70$bn parameter model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.