Recent Advances in Diffusion Models for Hyperspectral Image Processing and Analysis: A Review (2505.11158v2)
Abstract: Hyperspectral image processing and analysis has important application value in remote sensing, agriculture and environmental monitoring, but its high dimensionality, data redundancy and noise interference etc. bring great challenges to the analysis. Traditional models have limitations in dealing with these complex data, and it is difficult to meet the increasing demand for analysis. In recent years, Diffusion models, as a class of emerging generative approaches, have demonstrated promising capabilities in hyperspectral image (HSI) processing tasks. By simulating the diffusion process of data in time, the Diffusion Model are capable of modeling high-dimensional spectral structures, generate high-quality samples, and achieve competitive performance in spectral-spatial denoising tasks and data enhancement. In this paper, we review the recent research advances in diffusion modeling for hyperspectral image processing and analysis, and discuss its applications in tasks such as high-dimensional data processing, noise removal, classification, and anomaly detection. The performance of diffusion-based models on image processing is compared and the challenges are summarized. It is shown that the diffusion model can significantly improve the accuracy and efficiency of hyperspectral image analysis, providing a new direction for future research.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.