Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Covariance Density Neural Networks (2505.11139v1)

Published 16 May 2025 in cs.LG

Abstract: Graph neural networks have re-defined how we model and predict on network data but there lacks a consensus on choosing the correct underlying graph structure on which to model signals. CoVariance Neural Networks (VNN) address this issue by using the sample covariance matrix as a Graph Shift Operator (GSO). Here, we improve on the performance of VNNs by constructing a Density Matrix where we consider the sample Covariance matrix as a quasi-Hamiltonian of the system in the space of random variables. Crucially, using this density matrix as the GSO allows components of the data to be extracted at different scales, allowing enhanced discriminability and performance. We show that this approach allows explicit control of the stability-discriminability trade-off of the network, provides enhanced robustness to noise compared to VNNs, and outperforms them in useful real-life applications where the underlying covariance matrix is informative. In particular, we show that our model can achieve strong performance in subject-independent Brain Computer Interface EEG motor imagery classification, outperforming EEGnet while being faster. This shows how covariance density neural networks provide a basis for the notoriously difficult task of transferability of BCIs when evaluated on unseen individuals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube