Papers
Topics
Authors
Recent
2000 character limit reached

Enforced Interface Constraints for Domain Decomposition Method of Discrete Physics-Informed Neural Networks (2505.10925v1)

Published 16 May 2025 in cs.CE

Abstract: This study presents a discrete physics-informed neural network (dPINN) framework, enhanced with enforced interface constraints (EIC), for modeling physical systems using the domain decomposition method (DDM). Built upon finite element-style mesh discretization, the dPINN accurately evaluates system energy through Gaussian quadrature-based element-wise integration. To ensure physical field continuity across subdomain interfaces, the EIC mechanism enforces interfacial displacement constraints without requiring auxiliary sampling or loss penalties.This formulation supports independent meshing in each subdomain, simplifying preprocessing and improving computational flexibility. Additionally, by eliminating the influence of weak spatial constraints (WSC) commonly observed in traditional PINNs, the EIC-dPINN delivers more stable and physically consistent predictions.Extensive two- and three-dimensional numerical experiments validate the proposed framework's accuracy and demonstrate the computational efficiency gains achieved through parallel training. The results highlight the framework's scalability, robustness, and potential for solving large-scale, geometrically complex problems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.