Papers
Topics
Authors
Recent
2000 character limit reached

A Physics-Informed Convolutional Long Short Term Memory Statistical Model for Fluid Thermodynamics Simulations (2505.10919v1)

Published 16 May 2025 in physics.flu-dyn, cs.LG, and stat.ML

Abstract: Fluid thermodynamics underpins atmospheric dynamics, climate science, industrial applications, and energy systems. However, direct numerical simulations (DNS) of such systems are computationally prohibitive. To address this, we present a novel physics-informed spatio-temporal surrogate model for Rayleigh-B\'enard convection (RBC), a canonical example of convective fluid flow. Our approach combines convolutional neural networks for spatial feature extraction with an innovative recurrent architecture inspired by LLMs, comprising a context builder and a sequence generator to capture temporal dynamics. Inference is penalized with respect to the governing partial differential equations to ensure physical interpretability. Given the sensitivity of turbulent convection to initial conditions, we quantify uncertainty using a conformal prediction framework. This model replicates key features of RBC dynamics while significantly reducing computational cost, offering a scalable alternative to DNS for long-term simulations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.