Papers
Topics
Authors
Recent
2000 character limit reached

Improving the Data-efficiency of Reinforcement Learning by Warm-starting with LLM (2505.10861v1)

Published 16 May 2025 in cs.LG

Abstract: We investigate the usage of LLM in collecting high-quality data to warm-start Reinforcement Learning (RL) algorithms for learning in some classical Markov Decision Process (MDP) environments. In this work, we focus on using LLM to generate an off-policy dataset that sufficiently covers state-actions visited by optimal policies, then later using an RL algorithm to explore the environment and improve the policy suggested by the LLM. Our algorithm, LORO, can both converge to an optimal policy and have a high sample efficiency thanks to the LLM's good starting policy. On multiple OpenAI Gym environments, such as CartPole and Pendulum, we empirically demonstrate that LORO outperforms baseline algorithms such as pure LLM-based policies, pure RL, and a naive combination of the two, achieving up to $4 \times$ the cumulative rewards of the pure RL baseline.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.