Papers
Topics
Authors
Recent
2000 character limit reached

Ready2Unlearn: A Learning-Time Approach for Preparing Models with Future Unlearning Readiness (2505.10845v1)

Published 16 May 2025 in cs.LG and cs.AI

Abstract: This paper introduces Ready2Unlearn, a learning-time optimization approach designed to facilitate future unlearning processes. Unlike the majority of existing unlearning efforts that focus on designing unlearning algorithms, which are typically implemented reactively when an unlearning request is made during the model deployment phase, Ready2Unlearn shifts the focus to the training phase, adopting a "forward-looking" perspective. Building upon well-established meta-learning principles, Ready2Unlearn proactively trains machine learning models with unlearning readiness, such that they are well prepared and can handle future unlearning requests in a more efficient and principled manner. Ready2Unlearn is model-agnostic and compatible with any gradient ascent-based machine unlearning algorithms. We evaluate the method on both vision and language tasks under various unlearning settings, including class-wise unlearning and random data unlearning. Experimental results show that by incorporating such preparedness at training time, Ready2Unlearn produces an unlearning-ready model state, which offers several key advantages when future unlearning is required, including reduced unlearning time, improved retention of overall model capability, and enhanced resistance to the inadvertent recovery of forgotten data. We hope this work could inspire future efforts to explore more proactive strategies for equipping machine learning models with built-in readiness towards more reliable and principled machine unlearning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.