Emotion-sensitive Explanation Model (2505.10454v2)
Abstract: Explainable AI (XAI) research has traditionally focused on rational users, aiming to improve understanding and reduce cognitive biases. However, emotional factors play a critical role in how explanations are perceived and processed. Prior work shows that prior and task-generated emotions can negatively impact the understanding of explanation. Building on these insights, we propose a three-stage model for emotion-sensitive explanation grounding: (1) emotional or epistemic arousal, (2) understanding, and (3) agreement. This model provides a conceptual basis for developing XAI systems that dynamically adapt explanation strategies to users emotional states, ultimately supporting more effective and user-centered decision-making.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.