Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Longitudinal oscillations for eigenfunctions in rod like structures (2505.10084v1)

Published 15 May 2025 in math.AP

Abstract: We consider the spectrum of the Laplace operator on 3D rod structures, with a small cross section depending on a small parameter $\varepsilon$. The boundary conditions are of Dirichlet type on the basis of this structure and Neumann on the lateral boundary. We focus on the low frequencies. We study the asymptotic behavior of the eigenvalues and associated eigenfunctions, which are approached as $\varepsilon\to 0$ by those of a 1D model with Dirichlet boundary conditions, but which takes into account the geometry of the domain. Explicit and numerical computations enlighten the interest of this study, when the parameter becomes smaller. At the same time they show that in order to capture oscillations in the transverse direction we need to deal with the high frequencies. For prism like domains, we show the different asymptotic behavior of the spectrum depending on the boundary conditions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.