Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

LEMON-Mapping: Loop-Enhanced Large-Scale Multi-Session Point Cloud Merging and Optimization for Globally Consistent Mapping (2505.10018v2)

Published 15 May 2025 in cs.RO

Abstract: Multi-robot collaboration is becoming increasingly critical and presents significant challenges in modern robotics, especially for building a globally consistent, accurate map. Traditional multi-robot pose graph optimization (PGO) methods ensure basic global consistency but ignore the geometric structure of the map, and only use loop closures as constraints between pose nodes, leading to divergence and blurring in overlapping regions. To address this issue, we propose LEMON-Mapping, a loop-enhanced framework for large-scale, multi-session point cloud fusion and optimization. We re-examine the role of loops for multi-robot mapping and introduce three key innovations. First, we develop a robust loop processing mechanism that rejects outliers and a loop recall strategy to recover mistakenly removed but valid loops. Second, we introduce spatial bundle adjustment for multi-robot maps, reducing divergence and eliminating blurring in overlaps. Third, we design a PGO-based approach that leverages refined bundle adjustment constraints to propagate local accuracy to the entire map. We validate LEMON-Mapping on several public datasets and a self-collected dataset. The experimental results show superior mapping accuracy and global consistency of our framework compared to traditional merging methods. Scalability experiments also demonstrate its strong capability to handle scenarios involving numerous robots.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.