LEMON-Mapping: Loop-Enhanced Large-Scale Multi-Session Point Cloud Merging and Optimization for Globally Consistent Mapping (2505.10018v2)
Abstract: Multi-robot collaboration is becoming increasingly critical and presents significant challenges in modern robotics, especially for building a globally consistent, accurate map. Traditional multi-robot pose graph optimization (PGO) methods ensure basic global consistency but ignore the geometric structure of the map, and only use loop closures as constraints between pose nodes, leading to divergence and blurring in overlapping regions. To address this issue, we propose LEMON-Mapping, a loop-enhanced framework for large-scale, multi-session point cloud fusion and optimization. We re-examine the role of loops for multi-robot mapping and introduce three key innovations. First, we develop a robust loop processing mechanism that rejects outliers and a loop recall strategy to recover mistakenly removed but valid loops. Second, we introduce spatial bundle adjustment for multi-robot maps, reducing divergence and eliminating blurring in overlaps. Third, we design a PGO-based approach that leverages refined bundle adjustment constraints to propagate local accuracy to the entire map. We validate LEMON-Mapping on several public datasets and a self-collected dataset. The experimental results show superior mapping accuracy and global consistency of our framework compared to traditional merging methods. Scalability experiments also demonstrate its strong capability to handle scenarios involving numerous robots.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.