Discontinuous hybrid neural networks for the one-dimensional partial differential equations (2505.09911v1)
Abstract: A feedforward neural network, including hidden layers, motivated by nonlinear functions (such as Tanh, ReLU, and Sigmoid functions), exhibits uniform approximation properties in Sobolev space, and discontinuous neural networks can reduce computational complexity. In this work, we present a discontinuous hybrid neural network method for solving the partial differential equations, construct a new hybrid loss functional that incorporates the variational of the approximation equation, interface jump stencil and boundary constraints. The RMSprop algorithm and discontinuous Galerkin method are employed to update the nonlinear parameters and linear parameters in neural networks, respectively. This approach guarantees the convergence of the loss functional and provides an approximate solution with high accuracy.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.