ARM SVE Unleashed: Performance and Insights Across HPC Applications on Nvidia Grace (2505.09462v1)
Abstract: Vector architectures are essential for boosting computing throughput. ARM provides SVE as the next-generation length-agnostic vector extension beyond traditional fixed-length SIMD. This work provides a first study of the maturity and readiness of exploiting ARM and SVE in HPC. Using selected performance hardware events on the ARM Grace processor and analytical models, we derive new metrics to quantify the effectiveness of exploiting SVE vectorization to reduce executed instructions and improve performance speedup. We further propose an adapted roofline model that combines vector length and data elements to identify potential performance bottlenecks. Finally, we propose a decision tree for classifying the SVE-boosted performance in applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.