A document processing pipeline for the construction of a dataset for topic modeling based on the judgments of the Italian Supreme Court (2505.08439v1)
Abstract: Topic modeling in Italian legal research is hindered by the lack of public datasets, limiting the analysis of legal themes in Supreme Court judgments. To address this, we developed a document processing pipeline that produces an anonymized dataset optimized for topic modeling. The pipeline integrates document layout analysis (YOLOv8x), optical character recognition, and text anonymization. The DLA module achieved a mAP@50 of 0.964 and a mAP@50-95 of 0.800. The OCR detector reached a mAP@50-95 of 0.9022, and the text recognizer (TrOCR) obtained a character error rate of 0.0047 and a word error rate of 0.0248. Compared to OCR-only methods, our dataset improved topic modeling with a diversity score of 0.6198 and a coherence score of 0.6638. We applied BERTopic to extract topics and used LLMs to generate labels and summaries. Outputs were evaluated against domain expert interpretations. Claude Sonnet 3.7 achieved a BERTScore F1 of 0.8119 for labeling and 0.9130 for summarization.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.