Papers
Topics
Authors
Recent
2000 character limit reached

Explaining Autonomous Vehicles with Intention-aware Policy Graphs (2505.08404v1)

Published 13 May 2025 in cs.AI

Abstract: The potential to improve road safety, reduce human driving error, and promote environmental sustainability have enabled the field of autonomous driving to progress rapidly over recent decades. The performance of autonomous vehicles has significantly improved thanks to advancements in Artificial Intelligence, particularly Deep Learning. Nevertheless, the opacity of their decision-making, rooted in the use of accurate yet complex AI models, has created barriers to their societal trust and regulatory acceptance, raising the need for explainability. We propose a post-hoc, model-agnostic solution to provide teleological explanations for the behaviour of an autonomous vehicle in urban environments. Building on Intention-aware Policy Graphs, our approach enables the extraction of interpretable and reliable explanations of vehicle behaviour in the nuScenes dataset from global and local perspectives. We demonstrate the potential of these explanations to assess whether the vehicle operates within acceptable legal boundaries and to identify possible vulnerabilities in autonomous driving datasets and models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.