ConDiSim: Conditional Diffusion Models for Simulation Based Inference (2505.08403v1)
Abstract: We present a conditional diffusion model - ConDiSim, for simulation-based inference of complex systems with intractable likelihoods. ConDiSim leverages denoising diffusion probabilistic models to approximate posterior distributions, consisting of a forward process that adds Gaussian noise to parameters, and a reverse process learning to denoise, conditioned on observed data. This approach effectively captures complex dependencies and multi-modalities within posteriors. ConDiSim is evaluated across ten benchmark problems and two real-world test problems, where it demonstrates effective posterior approximation accuracy while maintaining computational efficiency and stability in model training. ConDiSim offers a robust and extensible framework for simulation-based inference, particularly suitable for parameter inference workflows requiring fast inference methods.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.