Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FedRS-Bench: Realistic Federated Learning Datasets and Benchmarks in Remote Sensing (2505.08325v1)

Published 13 May 2025 in cs.LG and cs.AI

Abstract: Remote sensing (RS) images are usually produced at an unprecedented scale, yet they are geographically and institutionally distributed, making centralized model training challenging due to data-sharing restrictions and privacy concerns. Federated learning (FL) offers a solution by enabling collaborative model training across decentralized RS data sources without exposing raw data. However, there lacks a realistic federated dataset and benchmark in RS. Prior works typically rely on manually partitioned single dataset, which fail to capture the heterogeneity and scale of real-world RS data, and often use inconsistent experimental setups, hindering fair comparison. To address this gap, we propose a realistic federated RS dataset, termed FedRS. FedRS consists of eight datasets that cover various sensors and resolutions and builds 135 clients, which is representative of realistic operational scenarios. Data for each client come from the same source, exhibiting authentic federated properties such as skewed label distributions, imbalanced client data volumes, and domain heterogeneity across clients. These characteristics reflect practical challenges in federated RS and support evaluation of FL methods at scale. Based on FedRS, we implement 10 baseline FL algorithms and evaluation metrics to construct the comprehensive FedRS-Bench. The experimental results demonstrate that FL can consistently improve model performance over training on isolated data silos, while revealing performance trade-offs of different methods under varying client heterogeneity and availability conditions. We hope FedRS-Bench will accelerate research on large-scale, realistic FL in RS by providing a standardized, rich testbed and facilitating fair comparisons across future works. The source codes and dataset are available at https://fedrs-bench.github.io/.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub