Papers
Topics
Authors
Recent
2000 character limit reached

SpecSphere: Dual-Pass Spectral-Spatial Graph Neural Networks with Certified Robustness (2505.08320v2)

Published 13 May 2025 in cs.LG

Abstract: We introduce SpecSphere, the first dual-pass spectral-spatial GNN that certifies every prediction against both $\ell_{0}$ edge flips and $\ell_{\infty}$ feature perturbations, adapts to the full homophily-heterophily spectrum, and surpasses the expressive power of 1-Weisfeiler-Lehman while retaining linear-time complexity. Our model couples a Chebyshev-polynomial spectral branch with an attention-gated spatial branch and fuses their representations through a lightweight MLP trained in a cooperative-adversarial min-max game. We further establish (i) a uniform Chebyshev approximation theorem, (ii) minimax-optimal risk across the homophily-heterophily spectrum, (iii) closed-form robustness certificates, and (iv) universal approximation strictly beyond 1-WL. SpecSphere achieves state-of-the-art node-classification accuracy and delivers tighter certified robustness guarantees on real-world benchmarks. These results demonstrate that high expressivity, heterophily adaptation, and provable robustness can coexist within a single, scalable architecture.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.