Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

LLM-Based Detection of Tangled Code Changes for Higher-Quality Method-Level Bug Datasets (2505.08263v1)

Published 13 May 2025 in cs.SE

Abstract: Tangled code changes-commits that conflate unrelated modifications such as bug fixes, refactorings, and enhancements-introduce significant noise into bug datasets and adversely affect the performance of bug prediction models. Addressing this issue at a fine-grained, method-level granularity remains underexplored. This is critical to address, as recent bug prediction models, driven by practitioner demand, are increasingly focusing on finer granularity rather than traditional class- or file-level predictions. This study investigates the utility of LLMs for detecting tangled code changes by leveraging both commit messages and method-level code diffs. We formulate the problem as a binary classification task and evaluate multiple prompting strategies, including zero-shot, few-shot, and chain-of-thought prompting, using state-of-the-art proprietary LLMs such as GPT-4o and Gemini-2.0-Flash. Our results demonstrate that combining commit messages with code diffs significantly enhances model performance, with the combined few-shot and chain-of-thought prompting achieving an F1-score of 0.88. Additionally, we explore embedding-based machine learning models trained on LLM-generated embeddings, where a multi-layer perceptron classifier achieves superior performance (F1-score: 0.906, MCC: 0.807). These findings are encouraging for the research community, as method-level bug prediction remains an open research problem, largely due to the lack of noise-free bug datasets. This research not only contributes a novel method-level perspective to the untangling problem but also highlights practical avenues for enhancing automated software quality assessment tools.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube