Papers
Topics
Authors
Recent
Search
2000 character limit reached

CNN and ViT Efficiency Study on Tiny ImageNet and DermaMNIST Datasets

Published 13 May 2025 in cs.CV | (2505.08259v1)

Abstract: This study evaluates the trade-offs between convolutional and transformer-based architectures on both medical and general-purpose image classification benchmarks. We use ResNet-18 as our baseline and introduce a fine-tuning strategy applied to four Vision Transformer variants (Tiny, Small, Base, Large) on DermatologyMNIST and TinyImageNet. Our goal is to reduce inference latency and model complexity with acceptable accuracy degradation. Through systematic hyperparameter variations, we demonstrate that appropriately fine-tuned Vision Transformers can match or exceed the baseline's performance, achieve faster inference, and operate with fewer parameters, highlighting their viability for deployment in resource-constrained environments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.