A Multi-scale Representation Learning Framework for Long-Term Time Series Forecasting (2505.08199v2)
Abstract: Long-term time series forecasting (LTSF) offers broad utility in practical settings like energy consumption and weather prediction. Accurately predicting long-term changes, however, is demanding due to the intricate temporal patterns and inherent multi-scale variations within time series. This work confronts key issues in LTSF, including the suboptimal use of multi-granularity information, the neglect of channel-specific attributes, and the unique nature of trend and seasonal components, by introducing a proficient MLP-based forecasting framework. Our method adeptly disentangles complex temporal dynamics using clear, concurrent predictions across various scales. These multi-scale forecasts are then skillfully integrated through a system that dynamically assigns importance to information from different granularities, sensitive to individual channel characteristics. To manage the specific features of temporal patterns, a two-pronged structure is utilized to model trend and seasonal elements independently. Experimental results on eight LTSF benchmarks demonstrate that MDMixer improves average MAE performance by 4.64% compared to the recent state-of-the-art MLP-based method (TimeMixer), while achieving an effective balance between training efficiency and model interpretability.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.