Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hyperbolic Contrastive Learning with Model-augmentation for Knowledge-aware Recommendation (2505.08157v1)

Published 13 May 2025 in cs.IR and cs.AI

Abstract: Benefiting from the effectiveness of graph neural networks (GNNs) and contrastive learning, GNN-based contrastive learning has become mainstream for knowledge-aware recommendation. However, most existing contrastive learning-based methods have difficulties in effectively capturing the underlying hierarchical structure within user-item bipartite graphs and knowledge graphs. Moreover, they commonly generate positive samples for contrastive learning by perturbing the graph structure, which may lead to a shift in user preference learning. To overcome these limitations, we propose hyperbolic contrastive learning with model-augmentation for knowledge-aware recommendation. To capture the intrinsic hierarchical graph structures, we first design a novel Lorentzian knowledge aggregation mechanism, which enables more effective representations of users and items. Then, we propose three model-level augmentation techniques to assist Hyperbolic contrastive learning. Different from the classical structure-level augmentation (e.g., edge dropping), the proposed model-augmentations can avoid preference shifts between the augmented positive pair. Finally, we conduct extensive experiments to demonstrate the superiority (maximum improvement of $11.03\%$) of proposed methods over existing baselines.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.