Integrating Koopman theory and Lyapunov stability for enhanced model predictive control in nonlinear systems (2505.08139v3)
Abstract: This paper delves into the challenges posed by the increasing complexity of modern control systems, specifically focusing on bilinear systems, a prevalent subclass of non-linear systems characterized by state dynamics influenced by the interaction of state and control variables. Traditional control strategies, such as PID controllers, often fall short in adequately addressing the intricacies of such systems due to their predictive limitations. To bridge this gap, we introduce Model Predictive Control (MPC), a sophisticated technique that utilizes system models to forecast future behaviors, allowing for the computation of an optimal control sequence by minimizing deviations and control efforts. The Koopman operator emerges as a pivotal tool in this framework by providing a means to linearize the nonlinear dynamics of bilinear systems. By integrating the principles of Lyapunov theory with the linearizing capabilities of the Koopman operator into the MPC framework, we give rise to Koopman Lyapunov-based Model Predictive Control (Koopman LMPC). This approach not only retains MPC's predictive capabilities but also harnesses the Koopman operator's ability to transform complex nonlinear behaviors into a linear framework, thereby enhancing the robustness and applicability of LMPC. With the stability assurances from Lyapunov theory, Koopman LMPC presents a robust solution to effectively control and stabilize bilinear systems. The paper underscores the efficacy of Koopman LMPC, emphasizing its significance in achieving optimal performance and system stability, marking it as a promising approach for the future of advanced control systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.