Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven feedback stabilization of nonlinear systems: Koopman-based model predictive control (2005.09741v2)

Published 19 May 2020 in eess.SY and cs.SY

Abstract: In this work, a predictive control framework is presented for feedback stabilization of nonlinear systems. To achieve this, we integrate Koopman operator theory with Lyapunov-based model predictive control (LMPC). The main idea is to transform nonlinear dynamics from state-space to function space using Koopman eigenfunctions - for control affine systems this results in a bilinear model in the (lifted) function space. Then, a predictive controller is formulated in Koopman eigenfunction coordinates which uses an auxiliary Control Lyapunov Function (CLF) based bounded controller as a constraint to ensure stability of the Koopman system in the function space. Provided there exists a continuously differentiable inverse mapping between the original state-space and (lifted) function space, we show that the designed controller is capable of translating the feedback stabilizability of the Koopman bilinear system to the original nonlinear system. Remarkably, the feedback control design proposed in this work remains completely data-driven and does not require any explicit knowledge of the original system. Furthermore, due to the bilinear structure of the Koopman model, seeking a CLF is no longer a bottleneck for LMPC. Benchmark numerical examples demonstrate the utility of the proposed feedback control design.

Summary

We haven't generated a summary for this paper yet.