Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Leveraging Reinforcement Learning and Koopman Theory for Enhanced Model Predictive Control Performance (2505.08122v2)

Published 12 May 2025 in eess.SY and cs.SY

Abstract: This study presents an innovative approach to Model Predictive Control (MPC) by leveraging the powerful combination of Koopman theory and Deep Reinforcement Learning (DRL). By transforming nonlinear dynamical systems into a higher-dimensional linear regime, the Koopman operator facilitates the linear treatment of nonlinear behaviors, paving the way for more efficient control strategies. Our methodology harnesses the predictive prowess of Koopman-based models alongside the optimization capabilities of DRL, particularly using the Proximal Policy Optimization (PPO) algorithm, to enhance the controller's performance. The resulting end-to-end learning framework refines the predictive control policies to cater to specific operational tasks, optimizing both performance and economic efficiency. We validate our approach through rigorous NMPC and eNMPC case studies, demonstrating that the Koopman-RL controller outperforms traditional controllers by achieving higher stability, superior constraint satisfaction, and significant cost savings. The findings indicate that our model can be a robust tool for complex control tasks, offering valuable insights into future applications of RL in MPC.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube