Invariant-Based Cryptography: Toward a General Framework (2505.08115v1)
Abstract: We develop a generalized framework for invariant-based cryptography by extending the use of structural identities as core cryptographic mechanisms. Starting from a previously introduced scheme where a secret is encoded via a four-point algebraic invariant over masked functional values, we broaden the approach to include multiple classes of invariant constructions. In particular, we present new symmetric schemes based on shifted polynomial roots and functional equations constrained by symmetric algebraic conditions, such as discriminants and multilinear identities. These examples illustrate how algebraic invariants -- rather than one-way functions -- can enforce structural consistency and unforgeability. We analyze the cryptographic utility of such invariants in terms of recoverability, integrity binding, and resistance to forgery, and show that these constructions achieve security levels comparable to the original oscillatory model. This work establishes a foundation for invariant-based design as a versatile and compact alternative in symmetric cryptographic protocols.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.