Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Tuning for Trustworthiness -- Balancing Performance and Explanation Consistency in Neural Network Optimization (2505.07910v2)

Published 12 May 2025 in cs.LG and cs.AI

Abstract: Despite the growing interest in Explainable Artificial Intelligence (XAI), explainability is rarely considered during hyperparameter tuning or neural architecture optimization, where the focus remains primarily on minimizing predictive loss. In this work, we introduce the novel concept of XAI consistency, defined as the agreement among different feature attribution methods, and propose new metrics to quantify it. For the first time, we integrate XAI consistency directly into the hyperparameter tuning objective, creating a multi-objective optimization framework that balances predictive performance with explanation robustness. Implemented within the Sequential Parameter Optimization Toolbox (SPOT), our approach uses both weighted aggregation and desirability-based strategies to guide model selection. Through our proposed framework and supporting tools, we explore the impact of incorporating XAI consistency into the optimization process. This enables us to characterize distinct regions in the architecture configuration space: one region with poor performance and comparatively low interpretability, another with strong predictive performance but weak interpretability due to low \gls{xai} consistency, and a trade-off region that balances both objectives by offering high interpretability alongside competitive performance. Beyond introducing this novel approach, our research provides a foundation for future investigations into whether models from the trade-off zone-balancing performance loss and XAI consistency-exhibit greater robustness by avoiding overfitting to training performance, thereby leading to more reliable predictions on out-of-distribution data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.