Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Graph Laplacian Wavelet Transformer via Learnable Spectral Decomposition (2505.07862v1)

Published 9 May 2025 in cs.CL

Abstract: Existing sequence to sequence models for structured language tasks rely heavily on the dot product self attention mechanism, which incurs quadratic complexity in both computation and memory for input length N. We introduce the Graph Wavelet Transformer (GWT), a novel architecture that replaces this bottleneck with a learnable, multi scale wavelet transform defined over an explicit graph Laplacian derived from syntactic or semantic parses. Our analysis shows that multi scale spectral decomposition offers an interpretable, efficient, and expressive alternative to quadratic self attention for graph structured sequence modeling.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: