Linear growth and moduli spaces of rational curves (2505.07645v1)
Abstract: Working in positive characteristic, we show how one can use information about the dimension of moduli spaces of rational curves on a Fano variety $X$ over $\mathbb{F}_q$ to obtain strong estimates for the number of $\mathbb{F}_q(t)$-points of bounded height on $X$. Building on work of Beheshti, Lehmann, Riedl and Tanimoto~\cite{BeheshtiLehmannRiedlTanimoto.dP}, we apply our strategy to del Pezzo surfaces of degree at most 5. In addition, we also treat the case of smooth cubic hypersurfaces and smooth intersections of two quadrics of dimension at least 3 by showing that the moduli spaces of rational curves of fixed degree are of the expected dimension. For large but fixed $q$, the bounds obtained come arbitrarily close to the linear growth predicted by the Batyrev--Manin conjecture.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.