SEReDeEP: Hallucination Detection in Retrieval-Augmented Models via Semantic Entropy and Context-Parameter Fusion (2505.07528v1)
Abstract: Retrieval-Augmented Generation (RAG) models frequently encounter hallucination phenomena when integrating external information with internal parametric knowledge. Empirical studies demonstrate that the disequilibrium between external contextual information and internal parametric knowledge constitutes a primary factor in hallucination generation. Existing hallucination detection methodologies predominantly emphasize either the external or internal mechanism in isolation, thereby overlooking their synergistic effects. The recently proposed ReDeEP framework decouples these dual mechanisms, identifying two critical contributors to hallucinations: excessive reliance on parametric knowledge encoded in feed-forward networks (FFN) and insufficient utilization of external information by attention mechanisms (particularly copy heads). ReDeEP quantitatively assesses these factors to detect hallucinations and dynamically modulates the contributions of FFNs and copy heads to attenuate their occurrence. Nevertheless, ReDeEP and numerous other hallucination detection approaches have been employed at logit-level uncertainty estimation or language-level self-consistency evaluation, inadequately address the semantic dimensions of model responses, resulting in inconsistent hallucination assessments in RAG implementations. Building upon ReDeEP's foundation, this paper introduces SEReDeEP, which enhances computational processes through semantic entropy captured via trained linear probes, thereby achieving hallucination assessments that more accurately reflect ground truth evaluations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.