Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

BinMetric: A Comprehensive Binary Analysis Benchmark for Large Language Models (2505.07360v1)

Published 12 May 2025 in cs.SE

Abstract: Binary analysis remains pivotal in software security, offering insights into compiled programs without source code access. As LLMs continue to excel in diverse language understanding and generation tasks, their potential in decoding complex binary data structures becomes evident. However, the lack of standardized benchmarks in this domain limits the assessment and comparison of LLM's capabilities in binary analysis and hinders the progress of research and practical applications. To bridge this gap, we introduce BinMetric, a comprehensive benchmark designed specifically to evaluate the performance of LLMs on binary analysis tasks. BinMetric comprises 1,000 questions derived from 20 real-world open-source projects across 6 practical binary analysis tasks, including decompilation, code summarization, assembly instruction generation, etc., which reflect actual reverse engineering scenarios. Our empirical study on this benchmark investigates the binary analysis capabilities of various state-of-the-art LLMs, revealing their strengths and limitations in this field. The findings indicate that while LLMs show strong potential, challenges still exist, particularly in the areas of precise binary lifting and assembly synthesis. In summary, BinMetric makes a significant step forward in measuring the binary analysis capabilities of LLMs, establishing a new benchmark leaderboard, and our study provides valuable insights for the future development of these LLMs in software security.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.