Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Time Series Forecasting via a Parallel Hybridization of ARIMA and Polynomial Classifiers (2505.06874v2)

Published 11 May 2025 in cs.LG and cs.AI

Abstract: Time series forecasting has attracted significant attention, leading to the de-velopment of a wide range of approaches, from traditional statistical meth-ods to advanced deep learning models. Among them, the Auto-Regressive Integrated Moving Average (ARIMA) model remains a widely adopted linear technique due to its effectiveness in modeling temporal dependencies in economic, industrial, and social data. On the other hand, polynomial classifi-ers offer a robust framework for capturing non-linear relationships and have demonstrated competitive performance in domains such as stock price pre-diction. In this study, we propose a hybrid forecasting approach that inte-grates the ARIMA model with a polynomial classifier to leverage the com-plementary strengths of both models. The hybrid method is evaluated on multiple real-world time series datasets spanning diverse domains. Perfor-mance is assessed based on forecasting accuracy and computational effi-ciency. Experimental results reveal that the proposed hybrid model consist-ently outperforms the individual models in terms of prediction accuracy, al-beit with a modest increase in execution time.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.