Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Predictive Digital Twins for Thermal Management Using Machine Learning and Reduced-Order Models (2505.06849v1)

Published 11 May 2025 in cs.LG

Abstract: Digital twins enable real-time simulation and prediction in engineering systems. This paper presents a novel framework for predictive digital twins of a headlamp heatsink, integrating physics-based reduced-order models (ROMs) from computational fluid dynamics (CFD) with supervised machine learning. A component-based ROM library, derived via proper orthogonal decomposition (POD), captures thermal dynamics efficiently. Machine learning models, including Decision Trees, k-Nearest Neighbors, Support Vector Regression (SVR), and Neural Networks, predict optimal ROM configurations, enabling rapid digital twin updates. The Neural Network achieves a mean absolute error (MAE) of 54.240, outperforming other models. Quantitative comparisons of predicted and original values demonstrate high accuracy. This scalable, interpretable framework advances thermal management in automotive systems, supporting robust design and predictive maintenance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.