Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hamiltonian Locality Testing via Trotterized Postselection (2505.06478v1)

Published 10 May 2025 in quant-ph, cs.CC, and cs.DS

Abstract: The (tolerant) Hamiltonian locality testing problem, introduced in [Bluhm, Caro,Oufkir `24], is to determine whether a Hamiltonian $H$ is $\varepsilon_1$-close to being $k$-local (i.e. can be written as the sum of weight-$k$ Pauli operators) or $\varepsilon_2$-far from any $k$-local Hamiltonian, given access to its time evolution operator and using as little total evolution time as possible, with distance typically defined by the normalized Frobenius norm. We give the tightest known bounds for this problem, proving an $\text{O}\left(\sqrt{\frac{\varepsilon_2}{(\varepsilon_2-\varepsilon_1)5}}\right)$ evolution time upper bound and an $\Omega\left(\frac{1}{\varepsilon_2-\varepsilon_1}\right)$ lower bound. Our algorithm does not require reverse time evolution or controlled application of the time evolution operator, although our lower bound applies to algorithms using either tool. Furthermore, we show that if we are allowed reverse time evolution, this lower bound is tight, giving a matching $\text{O}\left(\frac{1}{\varepsilon_2-\varepsilon_1}\right)$ evolution time algorithm.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com