2000 character limit reached
Simple algorithms to test and learn local Hamiltonians (2404.06282v1)
Published 9 Apr 2024 in quant-ph, cs.CC, cs.DS, cs.IT, cs.LG, and math.IT
Abstract: We consider the problems of testing and learning an $n$-qubit $k$-local Hamiltonian from queries to its evolution operator with respect the 2-norm of the Pauli spectrum, or equivalently, the normalized Frobenius norm. For testing whether a Hamiltonian is $\epsilon_1$-close to $k$-local or $\epsilon_2$-far from $k$-local, we show that $O(1/(\epsilon_2-\epsilon_1){8})$ queries suffice. This solves two questions posed in a recent work by Bluhm, Caro and Oufkir. For learning up to error $\epsilon$, we show that $\exp(O(k2+k\log(1/\epsilon)))$ queries suffice. Our proofs are simple, concise and based on Pauli-analytic techniques.
- Sample-efficient learning of interacting quantum systems. Nature Physics, 17(8):931–935, 2021. doi:10.1038/s41567-021-01232-0.
- Learning a local Hamiltonian from local measurements. Physical Review Letters, 122(2):020504, 2019. doi:10.1103/PhysRevLett.122.020504.
- Hamiltonian property testing (version 1). 2024. arXiv:2403.02968v1.
- Hamiltonian property testing (version 2). 2024. arXiv:2403.02968v2.
- Learning quantum hamiltonians at any temperature in polynomial time, 2023. arXiv:2310.02243.
- Clément L Canonne. A short note on learning discrete distributions. 2020. arXiv:2002.11457.
- Matthias C. Caro. Learning quantum processes and hamiltonians via the pauli transfer matrix, 2023. arXiv:2212.04471.
- Hamiltonian learning via shadow tomography of pseudo-choi states, 2023. arXiv:2308.13020.
- The advantage of quantum control in many-body hamiltonian learning, 2023. arXiv:2304.07172.
- Practical characterization of quantum devices without tomography. Physical Review Letters, 107(21):210404, 2011. doi:10.1103/PhysRevLett.107.210404.
- Learning low-degree functions from a logarithmic number of random queries. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, page 203–207, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3519935.3519981.
- Practical hamiltonian learning with unitary dynamics and gibbs states. Nature Communications, 15(1), 2024. doi:10.1038/s41467-023-44008-1.
- Learning to predict arbitrary quantum processes. PRX Quantum, 4(4):040337, 2023. doi:10.1103/PRXQuantum.4.040337.
- Optimal learning of quantum hamiltonians from high-temperature gibbs states. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 135–146. IEEE, 2022. doi:10.1109/FOCS54457.2022.00020.
- Learning many-body hamiltonians with heisenberg-limited scaling. Physical Review Letters, 130(20):200403, 2023. doi:10.1103/PhysRevLett.130.200403.
- Heisenberg-limited hamiltonian learning for interacting bosons, 2023. arXiv:2307.04690.
- Dissipation-enabled bosonic hamiltonian learning via new information-propagation bounds, 2023. arXiv:2307.15026.
- Quantum Boolean functions. 2008. arXiv:0810.2435.
- Efficient learning of ground & thermal states within phases of matter, 2023. arXiv:2301.12946.
- Learning quantum many-body systems from a few copies, 2023. arXiv:2107.03333.
- Efficient and robust estimation of many-qubit hamiltonians. Nature Communications, 15:311, 2024. doi:10.1038/s41467-023-44012-5.
- Noncommutative Bohnenblust–Hille inequalities. Mathematische Annalen, pages 1–20, 2023. doi:10.1007/s00208-023-02680-0.
- Scalably learning quantum many-body hamiltonians from dynamical data, 2022. arXiv:2209.14328.
- Robust and efficient hamiltonian learning. Quantum, 7:1045, 2023. doi:10.22331/q-2023-06-29-1045.
- Optimal short-time measurements for hamiltonian learning, 2021. arXiv:2108.08824.