Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

FlowHFT: Imitation Learning via Flow Matching Policy for Optimal High-Frequency Trading under Diverse Market Conditions (2505.05784v3)

Published 9 May 2025 in q-fin.TR, cs.AI, cs.CE, and q-fin.CP

Abstract: High-frequency trading (HFT) is an investing strategy that continuously monitors market states and places bid and ask orders at millisecond speeds. Traditional HFT approaches fit models with historical data and assume that future market states follow similar patterns. This limits the effectiveness of any single model to the specific conditions it was trained for. Additionally, these models achieve optimal solutions only under specific market conditions, such as assumptions about stock price's stochastic process, stable order flow, and the absence of sudden volatility. Real-world markets, however, are dynamic, diverse, and frequently volatile. To address these challenges, we propose the FlowHFT, a novel imitation learning framework based on flow matching policy. FlowHFT simultaneously learns strategies from numerous expert models, each proficient in particular market scenarios. As a result, our framework can adaptively adjust investment decisions according to the prevailing market state. Furthermore, FlowHFT incorporates a grid-search fine-tuning mechanism. This allows it to refine strategies and achieve superior performance even in complex or extreme market scenarios where expert strategies may be suboptimal. We test FlowHFT in multiple market environments. We first show that flow matching policy is applicable in stochastic market environments, thus enabling FlowHFT to learn trading strategies under different market conditions. Notably, our single framework consistently achieves performance superior to the best expert for each market condition.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 4 likes.