Papers
Topics
Authors
Recent
2000 character limit reached

Flight Validation of Learning-Based Trajectory Optimization for the Astrobee Free-Flyer (2505.05588v1)

Published 8 May 2025 in cs.RO, cs.AI, and cs.LG

Abstract: Although widely used in commercial and industrial robotics, trajectory optimization has seen limited use in space applications due to its high computational demands. In this work, we present flight results from experiments with the Astrobee free-flying robot on board the International Space Station (ISS), that demonstrate how machine learning can accelerate on-board trajectory optimization while preserving theoretical solver guarantees. To the best of the authors' knowledge, this is the first-ever demonstration of learning-based control on the ISS. Our approach leverages the GuSTO sequential convex programming framework and uses a neural network, trained offline, to map problem parameters to effective initial ``warm-start'' trajectories, paving the way for faster real-time optimization on resource-constrained space platforms.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.