Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 72 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Safety by Measurement: A Systematic Literature Review of AI Safety Evaluation Methods (2505.05541v1)

Published 8 May 2025 in cs.AI

Abstract: As frontier AI systems advance toward transformative capabilities, we need a parallel transformation in how we measure and evaluate these systems to ensure safety and inform governance. While benchmarks have been the primary method for estimating model capabilities, they often fail to establish true upper bounds or predict deployment behavior. This literature review consolidates the rapidly evolving field of AI safety evaluations, proposing a systematic taxonomy around three dimensions: what properties we measure, how we measure them, and how these measurements integrate into frameworks. We show how evaluations go beyond benchmarks by measuring what models can do when pushed to the limit (capabilities), the behavioral tendencies exhibited by default (propensities), and whether our safety measures remain effective even when faced with subversive adversarial AI (control). These properties are measured through behavioral techniques like scaffolding, red teaming and supervised fine-tuning, alongside internal techniques such as representation analysis and mechanistic interpretability. We provide deeper explanations of some safety-critical capabilities like cybersecurity exploitation, deception, autonomous replication, and situational awareness, alongside concerning propensities like power-seeking and scheming. The review explores how these evaluation methods integrate into governance frameworks to translate results into concrete development decisions. We also highlight challenges to safety evaluations - proving absence of capabilities, potential model sandbagging, and incentives for "safetywashing" - while identifying promising research directions. By synthesizing scattered resources, this literature review aims to provide a central reference point for understanding AI safety evaluations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.