Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PIDiff: Image Customization for Personalized Identities with Diffusion Models (2505.05081v2)

Published 8 May 2025 in cs.CV

Abstract: Text-to-image generation for personalized identities aims at incorporating the specific identity into images using a text prompt and an identity image. Based on the powerful generative capabilities of DDPMs, many previous works adopt additional prompts, such as text embeddings and CLIP image embeddings, to represent the identity information, while they fail to disentangle the identity information and background information. As a result, the generated images not only lose key identity characteristics but also suffer from significantly reduced diversity. To address this issue, previous works have combined the W+ space from StyleGAN with diffusion models, leveraging this space to provide a more accurate and comprehensive representation of identity features through multi-level feature extraction. However, the entanglement of identity and background information in in-the-wild images during training prevents accurate identity localization, resulting in severe semantic interference between identity and background. In this paper, we propose a novel fine-tuning-based diffusion model for personalized identities text-to-image generation, named PIDiff, which leverages the W+ space and an identity-tailored fine-tuning strategy to avoid semantic entanglement and achieves accurate feature extraction and localization. Style editing can also be achieved by PIDiff through preserving the characteristics of identity features in the W+ space, which vary from coarse to fine. Through the combination of the proposed cross-attention block and parameter optimization strategy, PIDiff preserves the identity information and maintains the generation capability for in-the-wild images of the pre-trained model during inference. Our experimental results validate the effectiveness of our method in this task.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube