Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Partitions with Optimal Query and Round Complexities (2505.05009v1)

Published 8 May 2025 in cs.DS, cs.IT, cs.LG, and math.IT

Abstract: We consider the basic problem of learning an unknown partition of $n$ elements into at most $k$ sets using simple queries that reveal information about a small subset of elements. Our starting point is the well-studied pairwise same-set queries which ask if a pair of elements belong to the same class. It is known that non-adaptive algorithms require $\Theta(n2)$ queries, while adaptive algorithms require $\Theta(nk)$ queries, and the best known algorithm uses $k-1$ rounds. This problem has been studied extensively over the last two decades in multiple communities due to its fundamental nature and relevance to clustering, active learning, and crowd sourcing. In many applications, it is of high interest to reduce adaptivity while minimizing query complexity. We give a complete characterization of the deterministic query complexity of this problem as a function of the number of rounds, $r$, interpolating between the non-adaptive and adaptive settings: for any constant $r$, the query complexity is $\Theta(n{1+\frac{1}{2r-1}}k{1-\frac{1}{2r-1}})$. Our algorithm only needs $O(\log \log n)$ rounds to attain the optimal $O(nk)$ query complexity. Next, we consider two generalizations of pairwise queries to subsets $S$ of size at most $s$: (1) weak subset queries which return the number of classes intersected by $S$, and (2) strong subset queries which return the entire partition restricted on $S$. Once again in crowd sourcing applications, queries on large sets may be prohibitive. For non-adaptive algorithms, we show $\Omega(n2/s2)$ strong queries are needed. Perhaps surprisingly, we show that there is a non-adaptive algorithm using weak queries that matches this bound up to log-factors for all $s \leq \sqrt{n}$. More generally, we obtain nearly matching upper and lower bounds for algorithms using subset queries in terms of both the number of rounds, $r$, and the query size bound, $s$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: