Papers
Topics
Authors
Recent
2000 character limit reached

Learning Linearized Models from Nonlinear Systems under Initialization Constraints with Finite Data (2505.04954v1)

Published 8 May 2025 in stat.ML, cs.LG, cs.SY, and eess.SY

Abstract: The identification of a linear system model from data has wide applications in control theory. The existing work that provides finite sample guarantees for linear system identification typically uses data from a single long system trajectory under i.i.d. random inputs, and assumes that the underlying dynamics is truly linear. In contrast, we consider the problem of identifying a linearized model when the true underlying dynamics is nonlinear, given that there is a certain constraint on the region where one can initialize the experiments. We provide a multiple trajectories-based deterministic data acquisition algorithm followed by a regularized least squares algorithm, and provide a finite sample error bound on the learned linearized dynamics. Our error bound shows that one can consistently learn the linearized dynamics, and demonstrates a trade-off between the error due to nonlinearity and the error due to noise. We validate our results through numerical experiments, where we also show the potential insufficiency of linear system identification using a single trajectory with i.i.d. random inputs, when nonlinearity does exist.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube